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INTRODUCTION:   
The OHSU Spellman/Gray work group is one of three collaborators funded by this Department of 
Defense Breast Cancer Multi-Team Award; the other two being comprised of the Lee work group from 
City of Hope (formerly of Stanford Medicine Cancer Institute) and the Slansky/Kappler work group from 
University of Colorado Denver/National Jewish Health.  The major objective of this endeavor is to 
develop novel strategies aimed at the enhancement of the protective effects of anti-tumor T cells in vivo 
in a patient-specific manner based on the hypothesis that partially protective anti-tumor T cells exist 
within TDLNs in most breast cancer patients.  This will be accomplished by identifying the antigens anti-
tumor T cells target in different breast cancer subtypes, potentially including antigens preferentially 
expressed by breast cancer stem cells. We will identify both MHC-I- and MHC-II-restricted antigens 
driving both CD8 and CD4 anti-tumor T cells in vivo, as CD4 T cells are needed to optimally sustain 
vaccine-elicited CD8 T cells in vivo [1].  Identified antigens will be categorized as to breast cancer 
subtype-specificity or shared status amongst subtypes, with the intention a patient could be matched with 
an optimal set of vaccine antigens for her tumor. Another novel aspect of this project is the identification 
of altered peptides (mimotopes) that may more efficiently activate anti-tumor T cells than the natural 
tumor epitopes. A final objective is to identify small molecule anti-cancer agents that synergize with 
cytotoxic T lymphocytes (CTLs) to enhance immune-mediated killing. Collectively, this undertaking will 
produce a set of immunologically validated antigens and mimotopes for major breast cancer subtypes, 
and a set of agents that cooperate with immune killing. These can be used in combinations in a patient-
specific manner to maximize clinical benefit while minimizing toxicity. The tools we develop will enhance 
the breadth and efficacy of existing and future approaches for immune therapy of breast cancer. We 
discuss here the Spellman/Gray group’s specific efforts toward realizing the goals of this collaboration. 
 

BODY:  
Generation and initial analysis of T cell clones [Task 5] 
As reported last year, the Spellman/Gray lab is contributing to the progress of this task through 
identification of MHC-I-restricted epitopes eluted from breast carcinoma cell lines utilizing a combination 
of immunocytochemistry, immunoprecipitation and mass spectrometry. Our in vitro model of breast 
cancer is a diverse collection of 70 breast cancer cell lines, which are the focus of intensive molecular 
and phenotypic characterization. We used these breast carcinoma cell lines to determine the sequence 
and the level of MHC-I-bound epitopes expressed on the cell surface, constructing a comprehensive 
panel of confirmed epitope sequences.  
 

In brief review of our procedure, we first identified MHC-I-positive breast carcinoma cells (MDA-MB-231, 
SUM159PT, CAMA-1, MCF7) by staining with MHC-I pan-specific and A2 subtype-specific antibodies. 
Nonspecific Ms-IgG staining was used as a negative control. Next, we developed a very efficient 
procedure (as detailed in the 2012 annual report) to immunoprecipitate MHC-I molecules followed by 
elution of MHC-I-bound epitopes with trifluoroacetic acid (TFA), allowing us to identify MHC-I-restricted 
epitopes expressed on the surface of different breast carcinoma cells.  The sequences of the peptides 
bound to MHC-I were acquired following analysis by mass spectrometry  
 

The total number of eluted peptides from the cell surface and the corresponding number of proteins 
associated with those peptides is equal to 3366 and 3078, respectively. This number does not 
correspond to the number of unique peptides and proteins (Table 1) because there are shared MHC I-
presented peptides and proteins among different breast carcinoma cell lines. After removing duplicates, 
the numbers of unique epitopes and corresponding proteins is 2821 and 1940, respectively.   
 

To find breast cancer specific MHC I-loaded epitopes that could have the ability to activate T cell 
response, we used gene expression profiling to determine the MHC I-presented genes with alterations or 
elevated expression levels in breast tumors compared to normal cells. First, we determined genes whose 
expression is altered in invasive breast cancers by copy number amplification, homozygous deletion, 
mRNA upregulation or downregulation, and mutation using the cBioPortal for Cancer Genomics that 
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contains large-scale cancer genomics data sets. We arranged all identified genes in accordance with the 
frequency of alterations in breast cancer samples. For further analysis we selected genes that have 
alterations in at least 20% of breast cancers. 
 

We then used gene expression data for 708 breast tumors and 329 normal tissues from The Cancer 
Genome Atlas (TCGA) [2], the European Bioinformatics Institute (EBI) [3], and the Gene Expression 
Omnibus (GEO) [4] to identify among the MHC I-presented genes those genes having preferential 
expression in breast cancer samples over normal samples. Alignment and expression values were 
generated using the Myrna software package [5]. We averaged expression amongst all tumor and normal 
samples for each gene and ranked the genes by level of differential expression in tumor and normal 
samples. In this analysis, we selected genes with at least 4 times higher expression in cancers than in 
normal tissues.   
 

Using the same data set, we evaluated differential expression across all normal and tumor samples by 
calculating the Median Split Silhouette (MSS) of each gene. MSS is a clustering algorithm measuring the 
average heterogeneity of possible clusters and determines whether the expression profile of a gene, 
across all normal and tumor samples, is best described by one or more clusters [6]. The advantage of 
MSS comes from its ability to identify biologically meaningful clusters where cluster size may be small.  
For our purposes, we limited the maximum number of potential clusters to three (kmax=3).  This kmax 
was chosen in an effort to capture separation of gene expression between normal and tumor tissues as 
well as any bimodal expression amongst the tumor samples alone [7].  Of the nearly 2000 genes 
identified following immunoprecipitation and elution of their associated epitopes, MSS predicted 494 of 

Table 3. Number of eluted MHC I- restricted peptides and corresponding proteins in breast carcinoma cells. 
(FDR=false discovery rate). 
 

 Cell line Subtype № peptides FDR, % № proteins FDR, % 
1 SUM159PT Claudin-law 439 13 385 13 
2 MDA-MB-231 Claudin-law 9 10 9 9 
2 MDA-MB-231 Claudin-law 49 15 46 15 
2 MDA-MB-231 Claudin-law 10 6 10 20 
3 HCC1395 Claudin-law 83 9 81 10 
4 BT549 Claudin-law 22 1 22 20 
5 HCC70 Basal 271 9 251 8 
6 HCC1187 Basal 688 6 607 9 
7 HCC1569 Basal 200 6 189 9 
8 MCF12A Basal 87 1 83 4 
9 CAL-120 Basal 4 1 4 11 
10 HCC1500 Basal 33 8 32 9 
11 MDA-MB-468 Basal 274 6 256 7 
12 HCC1806 Basal 299 6 273 9 
13 LY2  Luminal 241 5 226 11 
14 MCF7 Luminal 222 6 203 9 
15 CAMA-1 Luminal 118 1 104 4 
16 T47D HER2+ Luminal 75 1 71 9 
17 HCC1419 Luminal 17 2 17 10 
18 HCC1428 Luminal 22 1 21 7 
19 SUM185PE Luminal 88 2 86 2 
20 UACC812 Luminal 107 2 94 3 
 Total  3358  3070  
 Unique  2813  1939  
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the genes to cluster into two or three expression groups. The remaining genes were either predicted to 
display only one expression cluster (i.e., no potential of discerning tumor and normal expression profiles) 
or there was no expression information collected by Myrna (i.e., no reads aligned to the gene). Using this 
clustering, we selected 26 genes demonstrating preferential expression in breast tumors. 
 

We attempted to select breast cancer specific candidate genes using RNAseq data from 62 breast 
carcinoma cell lines and 6 non-transformed cell lines. We averaged expression data for each gene 
across all breast carcinoma cell lines and non-transformed cells, and for further analysis, we selected 
genes with 4 times higher expression in transformed over non-transformed cells.  
 

As an additional approach to identify immunogenic genes, we looked for genes frequently identified by 
our MHC I immunoprecipitation and elution approach among different cell lines. We arranged all MHC I-
presented genes based on the number of times each gene was identified among cell lines of a particular 
subtype and among all cell lines. We selected genes that have been identified at least 10 times in all 
analyzed cell lines or at least 5 times in subtype-specific cell lines. In addition, because the HLA-A2 allele 
is frequently present in all ethnic groups [8], we limited our analysis to MHC I-presented genes identified 
in HLA-A2-positive breast carcinoma cells. The ability of the selected peptides to be loaded into the 
peptide binding groove of HLA-A2 molecules was confirmed by the high binding score calculated by an 
epitope prediction algorithm [9]. These activities allowed us to select 132 MHC I-loaded epitopes from 
genes exhibiting either preferential or altered expression in breast cancers and breast carcinoma cells 
and are frequently presented on the surface of the analyzed cells. 
 

Additionally, optimization of conditions for amplification of the T cell receptor (TCR) gene using total RNA 
sample from breast cancer patients was carried out. We employed a template-switching approach and 
step-out PCR to amplify TCR cDNA 5’-end of the unknown sequence [10].  We were able to amplify the 
variable region of TCR-alpha but not that of TCR-beta. We have decided to use the published protocol for 
TCR cDNA amplification from a single cell [11]. 
 

RNAseq analysis of tumor cells [Task 7] 
RNAseq analysis to identify breast cancer-specific aberrant transcripts. RNAseq datasets are being used 
to conduct a systematic computational analysis to identify aberrant transcripts resulting in breast cancer 
antigens.  The Spellman/Gray computational group has developed an epitope prediction pipeline utilizing 
approximately 1000 breast cancer and normal tissue RNAseq samples available through TCGA, EBI, and 
GEO. Over one-third of the RNAseq samples originated from normal adult tissues, predominantly made 
up of breast, lung, liver, brain, heart, kidney, and B-cells.  A variety of other tissues are also represented, 
albeit in smaller sample numbers, to include bowel, skeletal muscle, lymph node, and ovary, amongst 
others.  The entirety of the tumor dataset was obtained from the TCGA Data Portal.  Of the better than 
700 tumor samples, TCGA categorized approximately 460 samples into basal, Her2, and luminal 
subtypes using the PAM-50 subtype prediction method [12]. Only sequences generated on the Illumina 
Genome Analyzer II and Genome Analyzer IIx [13] platforms were included in the study to maintain as 
much uniformity as possible between datasets generated at different locations.  As many of the 
sequences were single-end reads and read lengths varied from 50-150bp, all paired-end sequences 
were converted to single-end, and read lengths were trimmed as necessary to 50bp prior to being 
submitted in the form of FASTQ files to the analytical pipeline depicted in Figure 1. 
 

Mining of the RNAseq dataset was initiated through implementation of the Bowtie/Tophat/Cufflinks [14]–
[16] packages (collectively referred to as the Tuxedo suite) to carry out sequence assembly and 
alignment to the human genome (hg19), prediction of novel isoforms, and quantitation of transcript 
structure.  Using the Cuffmerge [16] feature of Cufflinks, the entire set of assemblies were merged such 
that identical transcripts across all samples were accounted for by a single identifier and its associated 
gene expression values.  
 

Novel isoforms of a transcript can indicate alternative splicing events not yet characterized by the 
reference genome as well as aberrant structural variations due to mutation, both of which can result in 



	
   7	
  

neoantigens.  Due to very low representation of the novel isoforms in some samples, it is likely the 
Tuxedo suite may not have detected, assembled, and subsequently determined the expression level for 
the new isoform in every sample.  In order to force Tuxedo to look for and calculate the expression 
values of all isoforms in each sample, the subset of transcripts predicted to be novel assemblies were 
extracted from the Cuffmerge output and used to construct a new transcriptome index.  The entire 
RNAseq dataset was rerun through the Tuxedo suite using this new index as the reference sequence.  
From here on, the collections of native and novel transcripts are kept separate from each other but run in 
parallel through the remainder of the pipeline.  
 

For calculation of gene expression 
levels, we used the binary logarithm of 
the FPKM (fragments per kilobase of 
transcript per million mapped reads) 
values as calculated by Cufflinks.  The 
FPKM values underwent full-quantile 
normalization utilizing the 
betweenLaneNormalization function of 
the EDASeq R/Bioconductor package 
[17]. This function accounts for 
distribution differences by matching 
the quantiles of the count distributions 
between samples as described in [17] 
and [18]. Differential expression of the 
genes was then determined utilizing 
the MSS clustering discussed 
previously (Task 5). Filtering steps 
were then taken to winnow the dataset 
to only those genes found within the 
high-expression cluster representing 
(1) at least an eight-fold expression 
differential between high- and low-
expression clusters, (2) a large tumor 
population (>95% tumor within the 
cluster) and (3) a significant portion of 
the total tumor population (>10% of all 
tumor samples in the dataset). This 
resulted in narrowing the native 
transcript candidates from ~79K to 
~175 and the novel isoform 
candidates from ~116K to  ~185. The 
reasoning behind this filtering scheme 
is as follows: 
 

1. The epitope must be expressed 
at a significantly higher level in 
tumor tissue than in normal 
tissue in order to be 
immunologically targetable. 

2. The epitope must be specific to 
breast tumor to avoid inadvertently targeting and damaging normal tissue. 

3. The epitope should be targetable in a significant portion of the breast cancer population 

With evidence of approximately 185 differentially expressed novel transcripts identified amongst the 

Figure 1. Pipeline for analysis of RNAseq data to identify native 
and neoantigen sequences. 
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dataset, it was necessary to designate those which held the most potential for translation into unique 
peptide constructs.  As it was necessary to accomplish this task manually, we initially removed any 
isoforms indicating start and stop sites at the 5’ and 3’ ends, respectively, which were identical to their 
nearest known reference transcript.  This step narrowed the total number of transcripts needing manual 
validation to 51, retaining those with the most variations as compared to known transcripts.  We will 
return to the isoforms removed during this step in the future to determine whether internal variations are 
present with the potential of translation to a novel epitope.   
 

At this point, the coding sequence of each unique transcript as predicted by the Tuxedo suite was 
translated to its corresponding peptide sequence using the TranSeq tool [19], [20] in all three frames.  
The most likely reading frame was selected via alignment to the human reference genome (hg19) using 
the UCSC-BLAT web tool [21].  The novel transcript nucleotide sequences were also aligned to hg19 
utilizing UCSC-BLAT to visually confirm the accuracy of the nearest predicted reference transcript as 
determined by Tuxedo.  An additional web tool, Clustal Omega [22], was then used in which the 
predicted nucleotide sequence was aligned to the nearest reference coding sequence. Similarly, the 
translated novel peptide sequence was aligned to the nearest reference peptide sequence.  In those 
cases where the Tuxedo-predicted nearest reference did not produce the best alignment, it was replaced 
by the more appropriate sequence.  Manual cross-comparison of the UCSC-BLAT and the two Clustal 
Omega alignments was carried out to reveal the most likely coding sequence of the predicted novel 
isoform. All isoform variations demonstrating the potential of producing an alternate start or stop 
translation site, an inclusion or exclusion of whole or partial exons, or a combination of exons unique 
amongst all known reference transcripts were documented.  
 

To be relevant as an immunological target, the epitope must be expressed at a significantly higher level 
in tumor tissue than normal tissue.  Those native transcripts preferentially expressed in tumors (high-
expression cluster contains >95% tumors and represents >10% of the tumor population) and 
demonstrating the highest expression levels (greater than 8-fold difference from nearest neighboring 
cluster) include the genes CD44, CREB3L4, FIP1L1, KCN34, MAZ, P4HA3, PIGF, PUSL1, RBM17, 
BMPR1B, TMEM150C, OBP2B, and two transcripts each of NAT1 and STARD10.  Tumor-specific 
transcripts (tumor population of high-expression cluster population is 100% and >4-fold difference from 
nearest neighboring cluster) include EN1, S100A7, SLITRK6, COL2A1, CST9, CST1, MMP11, IL20, 
RET, and FCRLB.  These genes are of particular interest due to their reduced potential of vaccine cross-
reactivity with normal tissue.  Evaluation of tumors of known subtype also reveals evidence of differential 
expression amongst the subtypes. Her2 and luminal tumors are found to preferentially express AGR2, 
DEGS2, and TPD52 transcripts. Overexpression of these transcripts is found in 78-92% of the Her2 and 
85-92% of the luminal tumors in the dataset compared to only 6-15% in basal.  Two different NAT1 
transcripts exhibit preferential expression in 74-81% of luminal tumors, but 24-26% and 2.3% of Her2 and 
basal tumors, respectively.  Approximately 91% of the basal and 68% of the Her2 tumors express 
FOXM1 at significant levels as opposed to 16% of the luminal tumors.  The above-noted EN1 transcript 
also shows higher expression amongst 67% of the basal samples, while only 6% and 0.7% of the Her2 
and luminal samples are significantly expressed, respectively.   
 

Novel tumor-specific isoforms with high-expression clusters at least 4-fold greater than the nearest 
neighboring cluster include those most closely related to a known transcript of CASP14, UNC5C, 
COL11A1, COL12A1, CST1, NCCRP1, or TPRG1.  MMP11 and TPRG1 each have two novel isoforms 
for the same reference transcript meeting these criteria.  The CST5 novel isoform is preferentially 
expressed in tumors with the high-expression cluster over 96% tumor.  A third novel isoform of TPRG1 
has a high-expression cluster tumor population of 99.5%.  Finally, an SPDEF novel isoform exhibits 
differential expression amongst breast cancer subtypes where significantly overexpressing samples 
consist of 99.3% of all luminal samples and 100% of all Her2 samples in the dataset; however only 
21.3% of the basal samples overexpress this isoform. 
 

The majority of the genes discussed here have been identified in previous breast cancer studies, lending 
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support to the functionality of our pipeline and validity to our results.  These results can be used to help 
guide future research for immunological targets, and the computational procedure can be used with 
enrolled patient RNAseq data to verify and quantitate novel isoform expression. 
 
 

RNAseq analysis of breast carcinoma cell lines. To determine the type of MHC I alleles in the breast 
carcinoma cells, which we used in our MHC I elution studies, we completed RNAseq experiments for 18 
cell lines.  RNAseq analysis was based on paired end reads of at least 75 bp and at least 6 Gbp of 
mappable sequence. We used the recently published seq2HLA method [23] to map RNAseq reads 
against a reference database of HLA alleles. The HLA type I allele assignments and their associated p-
values are listed in Table 2. Interestingly, when we looked at the RNAseq data we found that MHC I 
mRNA often does not have exons 1, 2, 5, 6 and 7 (Appendix I). It is known deletion of exons 6 and 7, 
which encode the cytoplasmic portion of MHC I molecules, drastically impairs proper MHC I trafficking 
through endosomal and lysosomal compartments and cytotoxic T lymphocyte (CTL) responses in vivo 
[24]. 
 

 

Identify small molecule agents enhancing tumor cell apoptosis and CTL killing [Task 12]  
As outlined in Aim 4 of the proposal, clinical efficacy of T cell-based therapies will be enhanced in 
combination with agents promoting tumor cell apoptosis. Support for this idea recently has been 
published showing chemotherapy can synergize with CTL-mediated killing [25]; however, 
chemotherapeutic agents can also inhibit T cell function. In order to identify drugs nontoxic to normal 
cells, we designed and ran cytotoxicity assays using three normal T cell clones from breast cancer 
patients and a collection of FDA-approved drugs consisting of 63 compounds during funded year one. All 
assays were done in triplicate at nine concentrations. Standardized compound plates have been created 
and are ready to determine IC50 for each compound against enrolled patient T cells. In addition, we have 
optimized medium composition (concentration of each: IL-2, IL-7, anti-CD3/anti-CD28 Macsi beads, 
human serum) to propagate T cells. 
  

KEY RESEARCH ACCOMPLISHMENTS:   
• Identified 132 MHC I-loaded epitopes, frequently presented on the cell surface, from genes with 

preferential or altered expression in breast cancers and breast cancer cell lines. 
• Created an analytical pipeline for in silico prediction of breast cancer epitopes from RNAseq data, 

identifying approximately 175 native transcripts and approximately 50 novel splice variants 
specifically or preferentially expressed in breast cancer tissue. 

 Deleted exons 
Cell line HLA-A HLA-B HLA-C 
1 MDA-MB-231 6 and 7 1, 2, 6, and 7 6 and 7, 

partially 
2 MDA-MB-468    
3 CAMA-1 6 and 7 2, partially  
4 BT549  6 and 7 6 and 7 
5 HCC70    
6 HCC1395 5 and 6  7 
7 HCC1419 6 and 7 2, partially, 6, 

and 7, partially 
7 

8 HCC1428 6 and 7 6 and 7  
9 HCC1500 6, partially  7, partially 
10 HCC1569   7, partially 
11 HCC1806  7, partially 6, partially and 

7, partially 
12 LY2 6 and 7 1, 2, 6, and 7 6 
13 MCF7 6 and 7 1, 2, 6, and 7 6, partially and 

7 
14 T47D 5, 6, and 7  6, partially 
15 UACC812 6 6 and 7 6 and 7 
16 HCC1187    
17 SUM159PT  6 and 7 5, 6, and 7 
18 MCF12A  6 and 7 6, partially and 

7 
	
  

                Table 2. Exon deletions in the HLA-A, B, and C genes in breast carcinoma cell lines. 
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• Performed HLA-A2 typing of in-house breast cancer cell lines from RNAseq data.  
• Constructed 63-compound cytotoxic assay plates for pending screening of enrolled patient T cells. 

 

REPORTABLE OUTCOMES:   
• NBCC/Artemis Project: We have completed our portion of the Artemis Project®, which was 

launched by the National Breast Cancer Coalition (NBCC) in September 2010 as a strategic 
campaign to end breast cancer by the end of the decade.  The ultimate goal of the Artemis Project® 
is to help open the door to personalized breast cancer immunotherapy and promote development of a 
preventative vaccination for breast cancer. Our proposed project sought to develop a robust portfolio 
of native and non-native antigens across the major breast cancer subtypes using strictly 
computational means.   

 

CONCLUSION:   
The focus of the Spellman/Gray work group over the past year has been upon the generation of 
materials, tools, and data for the purpose of aiding and supporting the research and findings of the entire 
multi-team collaboration endeavoring to identify antigenic targets for breast cancer-infiltrating T cells.  We 
have identified a number of candidates in breast cancer tissues as well as breast cancer cell lines, 
utilizing a variety of analytical methods. The RNAseq analysis tool is proof of concept of in silico epitope 
discovery from RNAseq data. It aids in the definition of the protein-epitope relationship by enlarging the 
knowledge base of protein-encoding transcripts beyond the protein models existing in public databases 
and by restricting the analyses to only the expressed transcripts. The results produced by this pipeline 
along with the MHC-I-bound epitopes identified by mass spectrometry in breast cancer cell lines will be 
used to rank epitopes for further characterization and development as therapeutic targets.  
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APPENDICES:   
Appendix I.  HLA genotyping from RNA-seq data in breast carcinoma cell lines. HLA genotypes and associated p-
values from seq2HLA algorithm are shown for each cell line. HLA-A2 phenotypes determined by ICC analysis are 
also shown below the names of cell lines. 
 

Cell Line HLA HLA1 p-Value HLA2 p-Value 
      
MDAMB231 A A*02 0 hoz("A*24") 0.0101329 
A2+ B B*41 9.27E-08 B*40 0.013585 
  C C*17 3.90E-14 C*02 0.01060021 
       
MDAMB468 A A*23 0.00201634 A*30 0.000300322 
A2- B B*27 0.00465698 B*53 0.002051244 
  C C*02 0.00031031 C*04 0.0427023 
       
CAMA1 A A*02 0 A*32 0.01403118 
A2- B B*40 0.00010729 B*15 0.05666284 
  C C*02 3.84E-05 C*03 0.007110044 
       
BT549 A A*01 0.00010431 A*02 0.001187262 
A2+ B B*15 1.11E-14 B*56 0.4242975 
  C C*07 0 C*03 0.009379311 
       
HCC70 A A*30 0 A*03 0.002774575 
A2- B B*78 3.79E-09 B*15 3.64E-05 
  C C*16 2.21E-07 hoz("C*03") 0.0002355 
       
HCC1395 A A*29 0 hoz("A*31") 0.2863664 
A2- B B*08 0.00025113 B*45 0.001237614 
  C C*07 3.20E-08 C*06 0.01455983 
       
HCC1419 A A*24 0.00067757 A*02 0.03597097 
A2- B B*46 0.04772688 B*52 0.03344892 
  C C*03 0.00332044 C*01 0.00971956 
       
HCC1428 A A*01 0.00611302 A*02 0.01550328 
A2- B B*07 5.09E-08 hoz("B*35") 0.8173494 
  C C*07 0 hoz("C*12") 0.0014498 
       
HCC1500 A A*68 7.57E-11 A*23 0.01166152 
A2+ B B*51 0.00010822 B*15 0.000209064 
  C C*02 0 hoz("C*04") 2.70E-05 
       
HCC1569 A A*30 0 A*68 0.003631942 
A2- B B*58 1.04E-05 B*53 0.004338769 
  C C*04 0.00665832 C*15 0.01074122 
       
HCC1806 A A*68 2.54E-08 A*23 0.007613425 
A2- B B*51 4.08E-05 B*15 0.000383347 
  C C*02 0 hoz("C*14") 1.96E-05 
       
LY2 A A*02 0 hoz("A*33") 0.7782346 
A2+ B B*44 1.71E-13 B*18 0.01163663 
  C C*05 0.00395624 hoz("C*06") 4.11E-05 
       
MCF7 A A*02 0 hoz("A*24") 1 
A2+ B B*44 0 hoz("B*35") 1 
  C C*05 0.00698762 hoz("C*04") 2.23E-05 
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T47D A A*33 3.87E-11 hoz("A*11") 0.0504919 
A2- B B*14 0 hoz("B*51") 0.4009827 
  C C*08 0.03627429 hoz("C*12") 7.50E-06 
       
UACC812 A A*68 0 A*02 0.000337381 
A2+ B B*51 0.00098582 B*15 0.003599431 
  C C*08 0.00201796 C*12 0.06304602 
       
HCC1187 A A*31 2.82E-05 A*01 0.02122619 
A2+ B B*08 0.00088782 B*40 0.007880993 
  C C*07 0.00086718 C*03 0.02039814 
       
SUM159PT A A*24 0.00163221 A*02 0.002906545 
A2+ B B*51 0.02056039 B*15 0.00892504 
  C C*15 1.93E-05 C*03 0.006169382 
       
MCF12A A A*66 0.02536765 A*02 0.000909216 
A2+ B B*41 0.00362804 B*35 0.002059722 
 C C*17 0.01016061 C*07 0.01017766 

 
 




